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Abstract 

This paper presents a methodology for the development of an optimal sampling strategy for defect inspection, 
which is crucial for yield management of state-of-the-art technologies. This requires understanding of the defect-yield 
relationship and yield reducing process drift models. Further, the sampling plan is based on the trade-offs between 
the costs of sarmpling and of defective dies. Our methodology is demonstrated using data from different fabs. 

1 Introduction 
Comprehensive defect inspection techniques are of cru- 
cial importance in yield management for state-of-the-art 
technologies such as 0.35pm. In-situ particle monitor- 
ing and bare wafer inspection provide information on 
equipment cleanliness. Patterned wafer laser scanning 
and digital image processing techniques are employed to 
provide quick feedback on deposited film qualification as 
well as real time defect information on product wafers. 
To maximize the efficiency of wafer inspection it is nec- 
essary to develop an optimal sampling strategy. 

This paper will1 discuss a methodology for the develop 
ment of such a strategy, which should specify the num- 
ber of inspected lots, the number of inspected wafers 
per lot, the number of inspected dies per wafer along 
with the spatial iiistribution of these dies, critical layers 
and a range of defect sizes per layer. In general, several 
sampling strategies are required to cover the different 
phases of technology development and manufacturing. 
In the initial rampup phase it is important to extract 
the equipment characteristics in terms of particle gen- 
eration as well is sensitivities of a particular product 
to defects a t  the most critical levels. This information 
can be used to develop a yield model which takes into 
account defect density, clustering and size distribution 
for each critical level. In this yield learning phase, the 
so-called short-loop experiments, in which specially de- 
signed test structures are employed to focus on a particu- 
lar process step (e.g. metal 1 patterning), are extremely 
valuable. The information gathered in these short-loop 
experiments can be then translated into the requirements 
for the full-flow monitoring and diagnosis. Correlation 
studies must be: done to relate the probe yield losses 

to the defects detected via in-line inspection. As a re- 
sult of these experiments an in-line inspection and sam- 
pling strategy can be developed for monitoring and for 
statistical process control in volume manufacturing to 
provide relevant information with a significant impact 
on the throughput and manufacturing cost. The sam- 
pling plan is based on trade-offs [2] between the costs of 
sampling and of defective dies, as well as on the limited 
capacity of inspection equipment. 

In this paper we first demonstrate a methodology €or 
in-line defect inspection based yield prediction using the 
data gathered in commercial IC fablines. Understand- 
ing the defect-yield relationship is necessary since defect 
monitoring is a surrogate for yield monitoring. Next we 
discuss the components of sampling strategy and present 
a defect sampling methodology framework. Then we il- 
lustrate the development of a sampling methodology us- 
ing the data collected from a volume production fab. All 
the necessary data analysis techniques used to determine 
the defect distributions are presented as well. The pa- 
per concludes with a brief discussion on the economics 
of sampling. 

2 Wafer inspection technology 
To develop a comprehensive yield management system, 
a number of different approaches need to be integrated. 
These approaches range from the in-situ particle moni- 
toring using equipment such as HYTs to wafer inspec- 
tion to the more detailed defect source analysis methods 
(e.g. SEMs with delayering). In this paper we will focus 
on the in-line wafer inspection. To assess the usefulness 
of wafer inspection, several key performance parameters 
must be established: speed of inspection, the abiiity to 
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Figure 1: List of Defects with High Killing Rates 

I 

Figure 2: Correlation of Actual Yield to Expected Yield 

inspect entire die area, defect capture rate and the abib 
ity to inspect defect types (both particles and process 
defects) for all layers and process steps. 

The primary technologies available for wafer inspec- 
tion include laser scanning, Fourier filtering and digital 
image processing. Laser scanning systems such as Tencor 
Surfscan 7600 are capable of a very high inspection rate 
due to large spot sizes. Fourier filtering systems such as 
IQ-165m employ real time scanning of the Fourier im- 
age, and with the pixel size of 1 pm are also capable 
of providing high speed inspections. Digital image pro- 
cessing systems such as KLA 2100 Series which utilize 
smaller pixel sizes and significant effort in image acqui- 
sition and processing are slower than the previous two 
methods. However, for the pixel size of 0.6 pm x 0.6 pm, 
even these systems can inspect the entire wafer below 10 
minutes; this performance is acceptable for in-line mon- 
itoring (i.e., it would not impact the overall cycle time 
significantly). Both laser scanning and digital image pro- 
cessing techniques are capable of entire die inspection, 
while Fourier filtering is limited to repetitive patterns 
which makes it useful for memory arrays only. In terms 
of sensitivity, digital image processing techniques are su- 
perior and have proved capable of detecting defects well 

below 0.2 pm for arbitrary geometries. While the digital 
image processing techniques can detect all defect types 
on all layers and for all process steps, laser scanning sys- 
tems are limited to light scattering particles and may 
have difficulties for certain steps (e.g. resist patterns) or 
layers (e.g. metalization layers with micro-roughness). 
In this paper, we focus on the defect information col- 
lected using KLA wafer inspection tools. 

3 In-line inspection based yield 
prediction 
The initial data for the sampling strategy development 
has been collected a t  the AMD manufacturing facility in 
Austin, TX. Four critical post etch steps were selected: 
Poly, Contact, Metal 1 and Metal 2. Wafers were in- 
spected on the KLA 2130, the defects were reviewed and 
classified on the KLA 2606, and the results were stored 
in the KLA 2550 database. The passing and failing die 
coordinates at sort were matched to the in-line defects 
detected at the critical levels. Finally the kill rate values 
were determined for each defect type (see Figure 1). 

It was determined that 44 percent of the die with the 
defects found via in-line inspection failed sort. Based 
upon this study, formulasfor Expected Yield Loss (EYL) 
for each defect type were derived as a function of in-line 
defect density, area scanned and the ratio of die tested 
to die scanned . The correlation of the in-line detected 
defects to the actual die yield is quite good. This is 
demonstrated in Fig. 2 where the predicted and actual 
yield values per work week are shown. This type of in- 
formation is essential to determine the sampling strat- 
egy for in-line wafer inspection; it permits the sampling 
strategy to focus on defect monitoring as a surrogate for 
yield monitoring. 

4 Sampling Strategy 
In this section we discuss the components of a sampling 
strategy, different analysis methods, as well as determi- 
nants of sampling strategies (such as the nature of the 

Where? 96 Of lots? Wafers per lot? 95 of SensitiviN? 

Figure 3: Decisions for Sampling Strategy 
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line, whether it is a development or a high volume prc+ 
duction line). Hem, we focus on the use of inspection 
for the purpose of detecting yield reducing process drift. 
Figure 3 describes ithe ingredient decisions of a sampling 
plan and indicates the critical levels that most successful 
fabs use. Table 1 shows current best practice in terms 
of the values of sampling percentages. This translates 
into having one KLA 21XX series in-line wafer inspec- 
tion tool per 750 wafer starts per week. 

Parame 
Wafer Inspect 
% of Lots 
Wafers per Lcit 
% of Wafer r Sensitivity 

Table 1. Best Practices for 0.5pm Process 

Current industrial practice is ad hoc and a result of 
historical evolution. As might be expected, the sampling 
effort is considerably more during the pilot or yield ramp 
mode, compared to the final production phase. Notice 
that percentage of lots inspected is the one area where 
the sampling percentage is equally high during the yield 
ramp and production phases; intuitively, this enables 
process drift tracking. Similarly, a greater variation in 
the defect density irequires an increased rate of sampling. 

Classical sampling design is typically based on the as- 
sumption that there are random variations in measures 
such as defect counts [4]. Control limits for SPC (Sta- 
tistical Process Control) and sampling plan are then de- 
veloped such that any change in the random variation 
can be detected with minimum average cost (including 
those costs due to searching for assignable causes, unde- 
tected out of control states, and sampling). However, the 
presence of additional spatial noise has been observed in 
many fabs. This in due to causes such as clusters or spa- 
tial defect variations resulting from process variations or 
the introduction (of particles. These make it difficult, 
if not impossible, to use SPC based on the total defect 
count effectively [I]. 

Next we describe our research which is based on s ta t is  
tical analysis and which considerably enhances current 
practice. In particular, we describe our use of automated 
clustering to set up enhanced SPC approaches; we re- 
duce the “noise” due to clusters so as to focus on the 
remaining “random” defects, rather than the tradition- 
ally monitored total  number of defects. The resulting 
random defects, after removing the clusters, are assumed 
to be closer to the independent, identically distributed 
random variables used for analysis purposes than the 
original unprocessed defects. The resulting diagnostic 
and sampling plans are thus more accurate and effec- 
tive. The measures of systematic variations such as the 

Figure 4: Defect Sampling Methodology Ramework 

number and type of clusters need to be monitored sep 
arately. Further, classification of the clusters enables 
the identification of process and other sources of defects, 
together with the attendant process improvement. Ad- 
ditionally, there is considerable debate about the use of 
defect counts versus defective die counts for monitoring 
purposes. We have observed that while defective dies are 
useful for yield prediction, defect counts are more useful 
for diagnostics. 

Figure 4 outlines the basic steps of our approach for 
developing a sampling plan, as well as the associated 
monitoring and diagnostic policy. Passive data on de- 
fect information (count, size and class) with appropriate 
sensitivity setting and die yields is collected. The de- 
fect data are pre-processed by removing the systematic 
spatial variations, such as those due to clusters, so as to 
reduce the noise in the defect data. Statistical analysis 
(such as ANOVA) is used to understand the inter-wafer 
and inter-lot variations. An appropriate static or dy- 
namic model is fitted to the pre-processed data. More 
generally, defect count process could be modeled as a 
stable defect level with small random variations, step 
jumps/excursions, or linear drift, or a combination of 
all these. Additional data, either historically available, 
or available through active experimentation, is used to 
validate the models. An estimator-detector, such as a 
static SPC or dynamic SPC (e.g. a Kalman Filter) is 
developed based on the process model, for future real- 
time use. The residual errors are computed and a hy- 
pothesis testing procedure is then used for the out-of- 
control state determination based on a given sampling 
plan. This model is then used along with the cost trade- 
off model to determine the optimal sampling plan. The 
last step, implementation and testing, requires testing 
residuals and updating process and drift parameters. 

5 Illustrative Examples 
We now describe two exampIes of fab data, demonstrate 
the specific applications of the approach outlined above 
in these cases, and discuss the results. We have used ag- 
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Figure 5: Random Defect Control Chart for Fab A 

gregate defect count data for the purposes of the current 
analysis, although future work will use defect size and 
type information also. More details can be found in [3]. 

Fab A: Sta t ic  Model  and SPC Development 
The data for this section has been collected at the AMD 
site mentioned earlier and corresponds to Post Etch 
Metal 1. The wafer maps are typically noisy in that the 
defects are not random, but have spatial distributions 
caused by process problems. We use automated cluster- 
ing analysis to remove non-random defects. The remain- 
ing defects are assumed to be random, although causes 
which are currently unknown (and consequently unas- 
signed) may remain. The standard Chi-square goodness- 
of-fit test reveal that the random defects conformed to 
the Poisson distribution. Figure 5 illustrates the random 
defect data with control limits obtained using the Pois- 
son distribution. In this setting classical control charting 
and sampling pian schemes can be used. Also, we have 
developed a procedure for relating the sampling plan to 
process noise variability. 

Fab B : Dynamic  Model  a n d  SPC Development 
Figure 6 below outlines the random defect trend. The 
trend indicates a stable defect level with small variations, 
step jumps and a linear trend with variations. We devel- 
oped a dynamic model to fit the data, where the random 

I Wafcr Number 

Figure 6: Random Defect Trend for Fab B 

defect count variation with the wafer number shifts be- 
tween two regimes. Regime l corresponds to random 
variation around a constant mean defect level. Regime 
2 corresponds to an AR(1) model, i.e., an Autoregres- 
sive model of order 1, where there is a random variation 
around a linear trend in the defect count. We then use 
hypothesis testing, based on a window of x observations, 
to detect the onset of Regime 2, which corresponds to a 
process drift. 

We develop the sampling plan by trading off the costs 
of sampling, being in undiagnosed out of control state, 
and search costs due to a in-control state misdiagnosed 
as a bad state. The inter -wafer and -lot variances and 
the resultant estimator-detector error variances are also 
inputs to this model. The sampling frequency is derived 
from optimizing the costs/proEts. 

6 Economics 
The purpose of this section is to show, using a simple 
model, that higher wafer inspection cost will be offset by 
the increased learning and subsequent defect reduction 
(Fig. 7). The vertical axis is not to scale. The model 
assumes an exponential decrease in ASP (average selling 
price) of each die with time and an average silicon cost of 
$4 per sq. cm. Fab X invests 3.2% of the cost of silicon 
for wafer inspection and learning efforts whereas Fab Y 
invests 1.6%. This results in an increased learning rate 
for Fab X. The rate of volume ramp is same for both 
the fabs. The benefit is equal to total revenues minus 
the total costs of processed silicon and of wafer inspec- 
tion. Such economic analysis can be used to optimize 
the sampling plan. 

Period 

Figure 7: Economic Model 
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